| NPV.2 NPV.2 | NPV.2 | CAR 2 CAR 2 | CAR 8 | |------------------------------------|--|--|---| | Read and write whole numbers up to | 1.000.000 using base-ten numerals, word form,
and various expanded froms. | Use computational fluency to add and subtract whole numbers up to 1,000,000 using strtegies and algorithms, including the standard | Solve mulitp-step wor
and having whole-nur | | | ana various expandea iroms. | 1,000,000 using strtegies and algorithms, including the standard algorithm, with mastery by the end of 4th grade. | mulitplication ,and div
remainders must be i | | | | | using equations with quantity. | | | | | | | 8/25 pre test | 9/21 | 9/8 pretest 9/15 9/21 | | | 1 | 2 | 1 1 | | | 0 2 | 2 2 | 1 1 | | | 2 | 2 3 | 1 1 | | | | 3 | 2 3 | | | 1
0 | 3 3 | 3 2 | | | 0 | 3 | 1 3 | | | | 2 3 | 2 2 | | | 0 | 2 3 1 1 1 | 1 1 1 4 | | | 0 | 1 1 3 | 1 1 | | | 2 | 2 | 1 3 | | | 2 | 4 4 | 2 3 | | | 0 | 2 1 | 1 1 | | | 1 | 2 3 | 1 3 | | | | 2 2 | 1 2 | | | 0 | 4 4 | 4 3 | | | | 1 3 | 2 2 4 | | | 1 | 1 2 | 1 1 3 | | | | | | | | | | | | | 2 | 3 3 | 2 3 | | | 0 | 2 2
1 2 2 | 1 1 3 | | | 1 | 2 | 2 | | | 1 | 2 3 | 2 3 | | | 0 | 1 1 2 | 1 3 | | | 0 | 1 | 1 1 | | | 1 | | 1 1 3 | | | 2 | 3 3 | 1 2 3 | | | 0 | 1 1 | 1 2 4 | | | 1 | 2 | 1 2 | | | 0 | 2 3 | 2 2 2 4 | | | 1 | 3 3 | 2 2 3 4 | | | 2 | 4 4 | 1 3 3 | | | 3 | 4 4 | 2 4 4 | | | 2 | 1 1 | 3 2 | | | 1 | 2 3 | 2 3 | | | 0 | 3 | 1 1 3 | | | | | 2 | | | 1 | 3 3 | 3 4 4 | | | 1 | 1 1 | 1 1 1 | | | 1 | 3 3 | 2 2 3 | | | 1 | 3 3 | 2 2 3
2 4 4 | | | 2 | 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 2 2 3
2 4 4
2 3 3 | | | 1 | 3 3 | 4 | | | 1 | 3 3 | 2 2 3 | | | 1 | 1 1 | 1 1 4 | | | 4 4 | 4 4 4 | 3 3 3
1 3 3 | | | 1 | 1 2 | 1 1 2 | | | 1 | 2 | 2 3 | | | 1
1
3
2
2 | 2
2
3
2
2 | 1 4 4 | | | 2 | 4 4 | 2 3 3 | | | 1 | 2 3 | 2 3 3
1 3 3
1 3 3 | | | | 2 3 | 1 3 3
1 1 1 | | | 1
1 | | 1 1 1 | | | 1 | 2
3
3 | 1 2 2 3 | | | | | | | | 1 | 1 2 3 | 2 3 | | | 1
1
1 | 1 2 3
2 2 3
3 3 3 3
3 3 3 4 4 4 4 | 1 2 | | | 1 | 2 3 | 1 1 2 | | | 3 | 3 3 3
3 3 3 | 2 3 3
2 3 3 | | | 3
3
2 | 3 3 3
4 4 4 | 2 3 3 | | | | | | | | 0400 | | NPV8 NPV8 NPV8 | | | | NPV 7 NPV 7 NPV 7 | | | | | |---|--|--|--|--------------------------|--|-------------------|--|----------------|--|--| | CAR 8
d problems posed with
other answers, using a | CAR 8
h whole numbers
addition, subtraction. | Evolain why a fraction a | /b is equalivalent to a fire | action (n*a)/(n*b) usina | | Decompose frac | tions, including fra | ctions greater | | | | d problems posed wit
mber answers, using a
ision, including proble
nterpreted and repres
symbols standing for t | ms in which
ent these problems | visuals fractions models
principle a/b=(n*a)/(N*
DENOMINATORS 2, | ; generating equivalent in
B). fRACTIONS INCL
3,4,5,6,8,10,12,100. | UDE UDE | | using concrete n | tions, including fra
ked numbers, into
nodels, drawings,
ctions include den
2,100. | and/or the | | | | symbols standing for t | ne unkn own | | | | | 2,3,4,5,6,8,10,12 | 2,100. | ommators | CAR.3
4.CAR.3 | CAR.3 | CAR.3 | | | | | |---------------------------|---|-----------|--|--|--|--| | Use strategie | s based on pl | ace value | | | | | | and the prop | es based on pl
erties of opera
-digit by one-c
I two two-digit | ations to | | | | | | numbers and | two two-digit | whole | | | | | | numbers.
4x1 digit CFA | 44 -1:-:: | | | | | | | 4X I digit CFA | 4x1 digit reteach | 3 | | | | | | | | | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | NPV.2 NPV.2 | NPV.2 | | CAR 2 CAR 2 | CAR 2 | | CAR 8 | |------------------------------------|---------------------------------|-----------------|--|--|---|--| | Read and write whole numbers up to | 1.000.000 using base-ten numera | als, word form, | Use computational fluency to add a | and subtract whole numbers up to | | Solve mulitp-step wo | | | and various e | xpanded froms. | 1,000,000 using strtegies and algorithm, with mastery by the end | orithms, including the standard
of 4th grade. | | Solve mulitp-step we
and having whole-nu
mulitplication ,and d
remainders must be | | | | | | | | using equations with
quantity. | | | | | | | | | | | 2 2 | | 1 | 4 | | | | 2 | 2 2 | 4 | 2 | 2 3 | | | | 3 | 4 4 | 4 | | 3 3 | | | | 2 | 2 3 | 3 | 1 | 2 3 | | | | 2 | 4 3 | 3 | | 3 | | | | 3 | 2 3 | 3 | 2 | 2 3 | | | | 3 | 2 3 | 3 | 2 | 3 3 | | | | 1 | 2 | | 1 | 1 1 | | | | 1 | 2 3 | 3 | 1 | 1 3 | | | | 1 | 2 3 | 3 | 2 | 3 3 | | | | 2 | 2 3 | 3 | 2 | 3 3 | | | | 1 | 2 3 | 3 | 1
2 | 3 3 | | | | 3 | 4 4 | 4 | 1 | 2 3 | | | | 3 | 3 3 | 3 | 2 | 2 3 | | | | 1 | 4 4 | 4 | 1 | 2 3 | | | | | | | | | | | | 1 | 3 3 | 3 | 1 | 1 3 | | | | 2 | 3 | | 1 | 1 | | | | 4 | 4 4 | 4 | 3 | 3 3 | | | | 1 | 2 3 | 3 | 2 | 3 3 | | | | 1 | 2 2 | 3 | 1 | 1 3 | | | | 1 | 2 2 3 | 3 | | 3 | | | | 1 | 2 3 | 3 | 2 | 2 3 | | | | 1 | 4 4 | 4 | 1 | 2 3 | | | | 2 | 4 4 | 4 | 2 | 3 3 | | | | 1 | 2 3 | 3 | 2 | 3 3 | | | | 2 | 3 3 4 | 3 | 3 | 3 3 | | | | 1 | | 3 | 1 | 2 3 | | | | 1 | 2 2 4 | 4 | 2 | 3 3 | | | | 3 | 3 3 | 3 | 2 | 2 3 | | | | 1 | 2 | | 1 | 1 3 | | | | 1 | 2 3 | 3 | 3 | 3 3 | | | | | 2 3 | 3 | 1 | 2 3 | 2 | 2 3 | 3 | 2 | 2 3 | | | | 2 | 2 3 | 3 | 1
2 | 1 2
3 3 | 3 | | | 1 | 2 3 | 3 | 1 | 1 2 | | | | 2 | 3 3 | 3 | 2 | 2 3 | | | | 1 | 2 3 | 3 | 1 | 3 | | | | 1 | 4 4 | 3 | 1 | 1 2 | | | | 1 | | 4 | 1 | 3 | | | | 1 | 2 3 | 3 | 1 | 1 | | | | 1 | 2 3 | 3 | 1 | 1 3 | | | | 1 | 2 3 | 3 | 1 | 1 3 | | | | 3 | | 4 | 2 | 3 | | | | 1 | 3 3 4 | 3
4 | 1 | 2 3 | | | | 1 | 2 3 | 4 | 1 | 3 | | | | 1 | 1 | | 1 | 1 2 | | | |
1 | 2 3 | 3 | 1 | 1 3 | | | | | | | | | | | | 1 | 1 3 | 3 | 1 | 3 | | | | 2 | 3 3 | 3 | 1 | 2 3 | | | | | 10/12 62% passed | | | 10/11/23 64% passed | | | | | | | | | | | | CAR 8 | CAR 8 | NPV 8 NPV 8 NPV 8 | | | | NPV 7 NPV 7 NPV 7 | | | | | |---|-------|--|--|---|--|-------------------|--|--|--|--| | d problems posed with whole numbers
where answers, using addition, subtraction,
iston, including problems in which
interpreted and represent these problems
symbols standing for the unkn own | | Explain why a fraction a visuals fractions models principle a/b=(n^a)/(N*DENOMINATORS 2, | action (n*a)/(n*b) using
ractions, using the
UDE | Decompose fractions, including fractions greater than one and mixed numbers, into unit fractions, using concrete models, drawings, and/or the numberline. Fractions include denominators 2,3,4,5,6,8,10,12,100. | CAR.3 | CAR.3 | | | | | |---|----------------------------------|-------------|--|--|--|--| | 4.CAR.3 | - 6 | | | | | | | Use strategie and the proper multiply four-numbers and numbers. | s based on pi
erties of opera | ace value | | | | | | multiply four- | digit by one- | digit whole | | | | | | numbers and | two two-digit | whole | | | | | | numbers. | | | | | | | | | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | 3 | 1 | | | | | | | | 3 | | | | | | | | 3 | 3 | | | | | | | 2 | 3 | | | | | | | 3 | | | | | | | | 3 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | | | | | | | | | 1 | | | | | | | | 3 | 3 | | | | | | | 3 | 3 | | | | | | | 1 | | | | | | | | 3 | | | | | | | | 2 | 3 | | | | | | | 3 | 3 | | | | | | | | | | | | | | | 1 | 3 | | | | | | | 3 | | | | | | | | | | | | | | | | 1 | | | | | | | | 3 | | | | | | | | 3 | 3 | 3 | | | | | | | | 3 | | | | | | | | 3 | 3 | | | | | | | 3 | 3 | | | | | | | 3 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | | | 3 | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | 3 | | | | | | | | 3 | | | | | | | | | | | | | | | 3 | | | | | | | | 1 |